A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells.
نویسندگان
چکیده
Free radical production and, consequently, oxidative stress play an important role in the pathogenesis of AIDS and cause damage to lipids, proteins, and DNA. In our previous study, the HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 have been found to induce oxidative stress in an immortalized endothelial cell line from rat brain capillaries, RBE4 (in vitro model of the blood-brain barrier). Here, we have determined the effects of a novel antioxidant, N-acetylcysteine amide (NACA), on gp120- and Tat-induced oxidative stress. Various oxidative stress parameters, including reduced glutathione (GSH), oxidized glutathione (GSSG), catalase (CAT) activity, and glutathione reductase (GR) activity, as well as malondialdehyde (MDA) levels, were used as measures of oxidative stress. NACA significantly increased the levels of intracellular GSH, CAT, and GR and decreased the levels of MDA in RBE4 cells, showing that oxidatively challenged cells were protected. Gp120- and Tat-induced increases in intracellular reactive oxygen species (ROS) were observed by using the 2',7'-DCF assay; the ROS scavenger, NACA, blocked ROS generation. A well-known apoptosis indicator, caspase-3 activity, was measured and was also found to have been returned to its control levels by NACA. Treatment of RBE4 cells with gp120 and Tat caused an increase in toxicity, as measured by lactate dehydrogenase (LDH) and tetrazolium reduction (MTS) assays. HIV-1 protein-induced toxicity in these cells was blocked by treatment with NACA. These studies show that NACA reverses gp120- and Tat-induced oxidative stress in immortalized endothelial cells.
منابع مشابه
HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide.
An increased risk of HIV-1 associated dementia (HAD) has been observed in patients abusing methamphetamine (METH). Since both HIV viral proteins (gp120, Tat) and METH induce oxidative stress, drug abusing patients are at a greater risk of oxidative stress-induced damage. The objective of this study was to determine if N-acetylcysteine amide (NACA) protects the blood brain barrier (BBB) from oxi...
متن کاملN-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells.
Oxidative stress plays an important role in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Methamphetamine (METH) is an amphetamine analog that causes degeneration of the dopaminergic system in mammals and subsequent oxidative stress. In our present study, we have used immortalized human brain microvascular endothelial (HBMVEC) cells to test whether N-acetylcys...
متن کاملProtective effect of N-acetylcysteine on Dipentyl phthalate (DPeP) induced cognitive dysfunction and brain oxidative stress in mice
Background: Dipentyl phthalate (DPeP) is a plasticizer compound commonly used in polyvinylchloride plastic to increase their softness and flexibility. They are not bound covalently to the plastic polymers and can therefore leach out into the environment, and have been shown to adversely affect the health of humans and animals. Methods: We investigated the effect of DPeP on the various cognitive...
متن کاملHIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells.
The blood-brain barrier (BBB) has an important role in the development of AIDS dementia. The HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 are neurotoxic and cytotoxic and have been implicated in the development of HIV dementia. They are known to cause oxidative stress and are associated with disruption of the BBB. Here, we used an immortalized endothelial cell ...
متن کاملEffects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12.
Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions such as cerebral ischemia and Parkinson's disease. Elevated levels of glutamate are thought to be responsible for CNS disorders through various mechanisms causing oxidative stress induced by a nonreceptor-mediated oxidative pathway which blocks cystine uptake and results i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 201 1 شماره
صفحات -
تاریخ انتشار 2006